

Use of Microarray Data in Support of a *Hypothetical* Drug Submission: Attenuation of Ventricular Remodeling Associated with Heart Failure in an Animal Model

Thomas Papoian, Ph.D., D.A.B.T.

Pharmacologist / Toxicologist
Division of Cardiovascular and Renal Products
Center for Drug Evaluation and Research
U.S. Food and Drug Administration

October 6, 2005 DIA/FDA/PhRMA/BIO/PWG Workshop Bethesda, MD

www.diahome.org

Disclaimer

The views expressed in this presentation are those of the speaker.

They do not necessarily reflect the "official" views of the Food and Drug Administration (FDA).

www diahome oro

Overview

- Use of nonclinical microarray data in drug development
 - Efficacy (pharmacogenomics) vs. safety (toxicogenomics) data
- Industry Guidance on Pharmacogenomic Data Submissions (March 2005)
 - Requirements for microarray data submission to FDA (CFR vs. PG Guidance)
- Advantages to the use of genomics to test drugs in animal models of disease
- Hypothetical drug submission example
 - Use of microarray data to monitor drug-induced attenuation of ventricular remodeling associated with heart failure in animals
- Possible format for submission of microarray data from animal efficacy studies
- Conclusions

www.diahome.org

Use of Nonclinical Microarray Data in Drug Development

- Preclinical models of efficacy using pharmacogenomics:
 - What a drug is supposed to do
 - "Proof of concept" studies
 - Pharmacological mechanism of action
 - May be under-utilized in current drug development programs
 - Submission of tabulated efficacy data generally is <u>not</u> required (CFR)
- Preclinical safety assessment using toxicogenomics:
 - What a drug is not supposed to do
 - Active area in drug development
 - Used primarily to:
 - Screen candidate compounds for toxicity early in drug development
 - Provide insights into mechanisms of toxicity
 - Predict possible human toxicity
 - Reduce cost (\$) of drug failures
 - Submission of tabulated safety data generally <u>is</u> required (CFR)

Guidance for Industry: Pharmacogenomic Data Submissions (March 2005)

- Submission of pharmacogenomic data during the IND phase:
 - "Adequate information about <u>pharmacologic</u> and toxicological studies of the drug involving laboratory animals or *in vitro*, on the basis of which the sponsor has concluded that it is reasonably safe to conduct the proposed clinical investigations." (21 CFR 312.23)
 - "A sponsor is using the test results to support scientific arguments pertaining to, for example, the <u>pharmacologic mechanism of</u> <u>action...</u>" (**PG Guidance**)

www.diahome.org

Guidance for Industry: Pharmacogenomic Data Submissions (March 2005)

- Submission of pharmacogenomic data during the **NDA** phase:
 - "The [NDA] application is required to contain reports of <u>all</u> investigations of the drug product sponsored by the applicant, and <u>all</u> other information about the drug product pertinent to an evaluation of the application that is received or otherwise obtained by the applicant from <u>any</u> source." (21 CFR 314.50)
 - "Submit reports of pharmacogenomic test results that constitute known valid, or probable valid, [but <u>not</u> <u>unestablished valid</u>] biomarkers for physiologic, <u>pathophysiologic</u>, <u>pharmacologic</u>, toxicologic, or clinical states or outcomes in the relevant species." (**PG Guidance**)

To Submit or Not to Submit: That is the Question

- "Companies don't have to submit any data on nonclinical efficacy biomarkers" (J. Woodcock; in Environ. Health Perspect., Aug 2004)
- However, compelling scientific arguments can be made to the use of genomic data to test drugs in animal models of human disease
- Therefore, decision by sponsor to submit nonclinical genomic efficacy data should be based on whether such data will strengthen their case for further study in humans

www.diahome.org

Advantages to the Use of Genomics to Test Drugs in Animal Models of Disease

- Characterize a specific disease process and its progression at the molecular level
- Monitor attenuation or regression of disease by specific therapeutic treatment at the molecular level
- Genomic profiling used in animals to monitor drug treatment of a specific disease process is only <u>one</u> component of the package of primary pharmacodynamic studies submitted in support of a drug application

Advantages to the Use of Genomics to Test Drugs in Animal Models of Disease (cont)

- Industry concerns regarding submission of nonclinical efficacy data and its use by regulators should <u>not</u> deter conduct of such studies if microarray can be used to support specific scientific arguments
 - Case Example: Treatment (or attenuation) of ventricular remodeling associated with heart failure in an animal model

www.diahome.org

Attenuation of Ventricular Remodeling Associated with Heart Failure

- Brief background on heart failure in humans
- Maladaptive responses of a failing heart
 - Myocardial hypertrophy
 - Ventricular remodeling
 - Possible role of matrix metalloproteinases
- Attenuation of ventricular remodeling with specific treatment
- Usefulness of microarray data to first <u>characterize</u> a specific disease process, then <u>monitor</u> therapeutic attenuation of that disease using appropriate animal models

Heart Failure (HF)

- HF develops when the heart fails to pump sufficient blood to supply the metabolic needs of the body's tissues
- Results in significant mortality and morbidity
 - In U.S., annual health care cost exceeds \$30 billion annually
- HF represents a common final-stage of a complex disease process with several possible etiologies:
 - Prolonged increases in blood pressure or volume
 - Mutations resulting in various familial forms of cardiomyopathies (e.g., dilated and hypertrophic)
 - Loss of myocytes due to exposure of toxic substances (e.g., doxorubicin)
 - Altered cardiac rhythm or conduction disturbances
 - Ischemia resulting from coronary artery disease or myocardial infarction (most common)

Gene Expression Studies from Failing Human Hearts

- Transcription profiles indicate possible genomic markers or molecular pathways in human HF:
 - Failing vs. non-failing hearts
 - Ischemic vs. non-ischemic cardiomyopathy
 - Dilated vs. hypertrophic cardiomyopathy
- Gene expression changes in human HF shown to be partly reversible following mechanical support with temporary ventricular assist device (Hall JL et al., 2004)

Differentially-Expressed Genes (partial list): Ischemic (ICM) vs. Non-Ischemic (NICM) Cardiomyopathy in Humans

Table 2. Differentially expressed genes shared between ICM vs. NF heart and NICM vs. NF heart comparisons

Gene Symbol	Gene Name	ICM-NF		NICM-NF	
		Fold change	FDR	Fold change	FDF
	Cell growth/maintenant	ce			
HBA2	hemoglobin, alpha-2	4.3	0.50	2.7	0.18
HSAGL2	human alpha-globin gene	3.5	0.50	2.4	0.18
HBB	hemoglobin, beta	3.4	0.50	2.6	0.18
HBA2	hemoglobin, alpha-2	3.4	0.50	2.2	0.18
HBAI	hemoglobin, alpha-1	3.3	0.50	2.1	0.18
AF059180	mutant beta-globin gene	3.0	0.50	2.4	0.18
HBB	hemoglobin, beta	3.0	0.50	2.6	0.18
DUT	dUTP pyrophosphatase	2.2	0.50	2.2	0.13
RARRES1	retinoic acid receptor responder-1	-3.0	0.90	-2.2	0.52
	Signal transduction				
PIK3R1	phosphoinositide 3-kinase, reg subunit, polypeptide-1	3.1	0.50	2.3	0.13
NPR3	atrionatriuretic pentide receptor C	3.1	0.50	2.5	0.1
CBLB	Cas-Br-M ectropic retroviral transforming sequence b	2.3	0.50	2.3	0.1
EDNRA	endothelin receptor type A	2,1	2.76	2.1	0.5
DKFZp564I1922	adlican	2.0	1.28	2.4	0.1
INFRSF11B	tumor necrosis factor receptor superfamily, member-11b	-2.7	1.69	-2.0	1.1
SCYA2	small inducible cytokine A2	-3.5	0.90	-2.9	0.1
	Metabolism				
EIFIAY	eukaryotic translation initiation factor-1A	2.2	0.50	2.2	0.60
KIAA0669	KIAA0669 gene product	2.2	0.50	3.2	0.13
SFPQ	splicing factor proline/glutamine rich	2.1	0.50	2.0	0.18
	Nucleus				
PHLDAI	pleckstrin homology-like domain, family A, member-I	3.5	0.50	5.1	0.13
PHLDA!	pleckstrin homology-like domain, family A, member-1	3.3	0.50	4.9	0.10
ANP32E	acidic nuclear phosphoprotein 32 family, member E	2.0	0.50	2.7	0.1
	Cell adhesion/cell communi	cation			
COL21A1	collagen, type XXI, alpha-1	2.3	0.50	2.3	0.13
FCN3	ficolin-3	- 3.2	0.90	-2.6	0.1

(From: Kittleson MM et al., Physiol. Genomics 2005; 21:299-307.)

www.diahome.org

Differentially-Expressed Genes (*partial list*): Dilated Cardiomyopathy (DCM) vs. Non-Failing Human Hearts

Table 3. Genes with altered expression as defined by score <0.025 or >0.975 and >1.5 fold change (50th percentile) in dilated cardiomyopathy

	Accession No.	Fold Change	Score
DCM Up	regulated Genes		
Cell Division	~		
cell cycle gene RCC1	D00591	1.6(1.1,2.2)	0.0117
replication protein A 14-kDa subunit	L07493	1.5(1.2.1.9)	0.0041
Cell signaling/communication			3.0011
actin-related protein Arp3 (ARP3)	AF006083	1.7(1.1.2.3)	0.0128
ADP-ribosylation factor-like protein 1	L28997	1.7(1.1.2.3)	0.0125
atrial natriuretic peptide (ANP)	M30262	8.5(1.9.15.0)	0.0036
beta-arrestin 1	AF084940	1.6(1.2,1.9)	0.0014
follistatin-related protein (FRP)	D89937	1.6(1.1.2.0)	0.0014
interferon alpha induced transcriptional activator	M97934	1.8(1.1.2.5)	0.0096
junctional adhesion molecule	U89915	1.5(1.1.1.9)	0.0073
lipocortin (annexin)	X05908	2.2(1.4.2.9)	0.0147
platelet/endothelial cell adhesion molecule-1	L34635	1.5(1.1.1.9)	0.007
receptor tyrosine kinase hekl1	L36642	2.0(1.0.3.0)	0.0234
rhoHP1 (ras-like protein)	D85815	2.2(1.4.3.0)	0.0015
Cell structure/motility			5,0010
actin, beta cytoplasmie	M12481	1.6(1.1.2.1)	0.0153
collagen alpha-1 type 1	M55998	1.5(1.0.2.0)	0.0236
decorin	NM_001920	2.2(1.2.3.1)	0.0008
lumican	NM 002345	2.1(1.1.3.2)	0.0141
myosin alkali light chain, atrial	M24121	2.1(1.2.3.0)	0.0035
tropomyosin TM30 (nm), cytoskeletal	X04588	1.6(1.1.2.1)	0.0097
Cell/organism defense			2.0001
calnexin	M94859	1.6(1.1.2.1)	0.0122
immunoglobulin heavy chain variable region V3-43	M99672	1.6(1.1,2.1)	0.0092
major histocompatibility locus class III regions	AF109905	2.0(1,2,2,9)	0.0094
myoglobin	M14603	1.8(1.2.2.4)	0.0044
T cell-specific protein	M21121	2.4(1.0,3.7)	0.0212
T-cell receptor beta chain	L36092	1.5(1.0.2.0)	0.0162

(From: Hwang J et al., Physiol. Genomics 2002; 10:31-44.)

Differentially-Expressed Genes (partial list): Hypertrophic Cardiomyopathy (HCM) vs. Non-Failing Human Hearts

 ${\it Table 4. Genes with altered expression as defined by score < 0.025 or > 0.975 and > 1.5 fold change (50th percentile) in hypertrophic cardiomyopathy } \\$

	Accession No.	Fold Change	Score
HC.	M upregulated Genes		
Cell signaling/communication	1 8		
atrial natriuretic peptide (ANP)	M30262	9.2(3.2,15.1)	0.0011
follistatin-related protein (FRP)	D89937	1.7(1.1.2.3)	0.0127
GDP-dissociation inhibitor rab	D13988	1.5(1.1,1.9)	0.0142
interleukin-1 receptor-associated kinase	L76191	1.7(1.0,2.4)	0.0231
lectin P35	D63158	1.5(1.0,1.9)	0.0245
platelet-activating factor receptor	P25105	1.5(1.2,1.8)	0.0033
RAB7, member RAS oncogene family-like 1	D84488	1.6(1.1,2.1)	0.0112
voltage-dependent anion channel	L06132	1.6(1.0,2.2)	0.0187
Cell structure/motility			
20-kDa myosin light chain	J02854	2.1(1.3,2.8)	0.0033
actin, beta cytoplasmic	M12481	1.5(1.1,1.9)	0.0129
decorin	NM_001920	1.7(1.2,2.2)	0.014
desmin	U59167	1.6(1.1,2.1)	0.0003
dynein beta heavy chain B2HC	AB012308	1.5(1.2,1.8)	0.0041
Cell/organism defense			
90-kDa heat-shock protein	X15183	1.7(1.3,2.1)	0.008
heat shock protein (hsp40) homolog	U40992	1.7(1.2,2.3)	0.0062
heat shock protein HSP70	X51757	1.9(1.1,2.8)	0.0163
Protein/gene expression			
DBP2 for ATP-dependent RNA helicase	AB001601	1.5(1.1,1.8)	0.009
elongation factor 2 (EF-2)	X51466	1.7(1.2,2.1)	0.0079
ribosomal protein L10	P27635	1.6(1.0,2.2)	0.0221
ribosomal protein L12	D28443	1.8(1.1,2.5)	0.0128
ribosomal protein L12	L06505	1.7(1.1,2.4)	0.0136
ribosomal protein L39 homolog	L05096	1.5(1.0,1.9)	0.0171
ribosomal protein S17	M13932	1.7(1.2,2.2)	0.0064

(From: Hwang J et al., Physiol. Genomics 2002; 10:31-44.)

www.diahome.org

Differentially-Expressed Genes (*partial list*): Before vs. After Mechanical Unloading in Failing Human Hearts

Table 2. SAM table listing statistically significant genes in 19 paired human heart samples following mechanical unloading

Gene Name	Gene Description	GenBank Accession	Median Pair Fold Chang
	Downregulated in post		
212298_at	neuropilin-1	BE620457	1.52
203666_at	stromal cell-derived factor 1	NM_000609.1	1.69
218351_at	hypothetical protein FLJ20502	NM_017845.1	1.45
211671_s_at	nuclear receptor subfamily 3, group C, member 1	U01351.1	1.32
204284 at	protein phosphatase 1, regulatory (inhibitor) subunit 3C	N26005	2.13
209821 at	DVS27-related protein	AB024518.1	1.64
214761 at	OLF-1/EBF associated zinc finger gene	AW149417	1.47
206404_at	fibroblast growth factor 9 (glia-activating factor)	NM_002010.1	1.59
219436_s_at	endomucin	NM 016242.1	1.23
206662 at	glutaredoxin (thioltransferase)	NM 002064.1	1.33
205501_at	Homo sapiens cDNA FLJ25677 fis	AI143879	1.32
206201_s_at	mesenchyme homeo box 2	NM_005924.1	1.65
212989_at	mob protein	AI377497	1.28
219806_s_at	FN5 protein	NM_020179.1	1.29
208131_s_at	prostaglandin 12 (prostacyclin) synthase	NM_000961.1	1.54
207332 s at	transferrin receptor (p90, CD71)	NM_003234.1	1.47
205571 at	lipovltransferase	NM 015929.1	1.37
202595_s_at	leptin receptor overlapping transcript-like 1	AF161461.1	1.2
203337 x at	integrin cytoplasmic domain-associated protein 1	NM 004763.1	1.32
202687_s_at	tumor necrosis factor (ligand) superfamily, member 10	U57059.1	1.57
205047_s_at	asparagine synthetase	NM_001673.1	1.52
205150_s_at	KIAA0644 gene product	AV724192	1.61
	Upregulated in post		
203543_s_at	basic transcription element binding protein 1	NM 001206.1	1.92
212665 at	DKFZP434J214 protein	AL556438	1.95
205883 at	zinc finger protein 145 (Kruppel-like)	NM 006006.1	2.6
207513 s at	zine finger protein 189	NM_003452.1	2
204132_s_at	forkhead box O3A	NM_001455.1	2.07

(From: Hall JL et al., Physiol. Genomics 2004; 17:283-291.)

Adaptive Mechanisms in HF to Maintain Pumping Function

- Myocardial hypertrophy to augment mass of contractile tissue
 - Complex intracellular signaling pathways
 - Suitable for microarray and pathway analysis of transcriptional profiles
- Increased release of catecholamines to enhance contractility
- Activation of the renin-angiotensin-aldosterone system to maintain arterial pressure
- In short-term, adaptive mechanisms in HF can be effective in maintaining normal cardiac function
- In long-term, heart's ability to compensate is <u>finite</u>, and these adaptive processes often result in adverse consequences (i.e., ventricular remodeling)

www.diahome.org

Ventricular Remodeling

- Adverse adaptive response following myocardial injury (e.g., infarction)
- Response initially adaptive:
 - Cardiac hypertrophy, fibrosis, and degradation and deposition of extracellular matrix components
- Progressive remodeling becomes a maladaptive process leading to significant morbidity and mortality:
 - Collagen important for mechanical stability of heart degraded by increased matrix metalloproteinase (MMP) activity
 - Replaced by fibrous intercellular deposits of poorly-linked collagen
 - Leads to weakening and dilatation of left ventricular (LV) wall

Role of Matrix Metalloproteinases (MMP) in Heart Failure

- Studies have shown increased protein expression and activation of MMPs (e.g., collagenases and gelatinases that are transcriptionally regulated by various inflammatory cytokines, hormones, and growth factors) during myocardial remodeling processes:
 - ACE inhibition suppressed increase in MMPs and prevented LV dilatation and systolic dysfunction in Dahl salt-sensitive rats with hypertensive HF (Sakata Y et al, 2004)
 - Significant induction of MMPs in local region of infarction induced by coronary artery ligation in sheep (Wilson EM et al., 2003)
 - TNF- α contributes to myocardial remodeling through induction of MMPs, and TNF- α blocking protein attenuates remodeling in a chronic pacing model of HF in dogs (Bradham WS *et al.*, 2002)
 - Increased MMP protein in hearts and blood from humans with recent MI or with HF (Jones et al., 2003; Polyakova V et al., 2004)

www.diahome.org

Role of Matrix Metalloproteinases (MMP) in Heart Failure

- Overall, these studies suggest:
 - A possible mechanistic explanation for role of MMPs in HF and their transcriptional regulation by inflammatory cytokines, hormones, and growth factors
 - Targeted pharmacological inhibition of MMPs (or their upstream transcriptional regulators) might have beneficial effects on attenuating the adverse ventricular remodeling process that follows MI
 - Microarray data including pathway analysis (e.g., hypertrophy, MMP expression, and fibrosis in HF) offers the possibility to monitor progression of HF, remodeling, and its attenuation with drug therapy in animals
 - Such data are difficult to obtain from human hearts

DRUG INFORMATION ASSOCIATION

Possible Format for Submission of Microarray Data from Animal Efficacy Studies

- Tables of genes with statistically significant alterations in expression (i.e., differentially-expressed genes):
 - Gene variables include:
 - Gene name
 - GeneBank accession number
 - Gene function or role in cellular pathway, if known
 - Paired mean fold-change between:
 - Normal vs. diseased animals (i.e., for characterizing disease)
 - Treated vs. untreated diseased animals (i.e., for monitoring treatment)
- Figures of pathway analysis, if relevant

www diahome ord

Conclusions

- Use of efficacy (i.e., pharmacodynamic) genomic data in animals can provide strong scientific support for further drug development in humans
 - "Proof of principle" studies
 - Pharmacological mechanism of action
 - Specific therapeutic treatment is acting on specific molecular pathway(s) associated with specific disease process
- <u>Decision by sponsor</u> to submit nonclinical genomic efficacy data should be based on whether such data will strengthen their case for further study in humans
- Refer to Pharmacogenomics Guidance (March 2005) for specific submission requirements (i.e., complete vs. abbreviated reports, or study synopses) and for information regarding VGDSs